| Paris, France | 2021 | 23/06/2021 - 25/06/2021 | Setcor Conference and Exhibition | Evaluation of doxorubicin-loaded magnetite nanoparticles Synthesis and in vitro cytotoxicity on 4T1 tumorigenic epithelial cell lines | oral | Breast cancer is the most commonly diagnosed tumor formation in women around the world, which is also the leading cause of female cancer mortality. Although significant progress has been made in the diagnosis and therapy of breast cancer, early detection of disease and antimetastatic treatment still remain a serious problem. The development of the next generation of cancer therapy modalities is relevant in modern oncology. Nanotechnology offers promising prospects in this direction. Recently, the uptake of multifunctional iron oxide nanoparticles, combining both therapeutic and diagnostic capabilities, is gaining increasing attention in terms of cancer treatment, diagnosis, and targeted drug delivery. This study is dedicated to the synthesis of Citric acid-modified Superparamagnetic Iron Oxide Nanoparticles (SPIONs) functionalized with an anti-cancer drug Doxorubicin (DOX), using a controlled chemical co-precipitation method and study in vitro cytotoxicity of obtained magnetic nanofluids (containing Bare, Citric acid-coated, and DOX-loaded IONPs) on 4T1 tumorigenic epithelial cell lines (Figure 1). The synthesized samples were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Small-Angle X-ray Scattering (SAXS), Vibrating Sample Magnetometry (VSM), and UV-VIS spectrophotometry. To properly analyze and understand the behavior of 4T1 cancer cells after administrating Bare, Citric acid modified, and DOX-loaded IONPs in comparison with free DOX, a complex set of in vitro tests were used, including MTT assay, determination of the cell cycle, and IONPs uptake. Synthesized magnetic nanofluids containing Iron ox-ide nanoparticles (both Bare and modified with citric acid), revealed cytotoxicity on 4T1 cancer cells. However, the results showed the advantage of a combination of doxorubicin and magnetic nanoparticles. The DOX-loaded IONPs were more able to inhibit the growth and proliferation of 4T1 breast cancer cells in vitro, indicating that the system has the potential to act as an antitumor chemotherapeutic agent. | https://www.setcor.org/conferences/nanotech-france-2021 |