Aleksandre Jishiashvili

Academic Doctor of Science

Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University

Scan QR

Vapor synthesis of ZnO nanocrystal-based hollow microspheres A.Jishiashvili, A.Chirakadze, Z.ShiolashvilI, N.Makhatadze, V.Gobronidze, D.Jishiashviliი. conference proceedingsProceedings of the 7th International Conference MTP-2021: Modern Trends in Physics. December 15-17 ISBN: 978-9952-546-24-8 http://mtp2021.bsu.edu.az/ABSTRACT_BOOK_MTP_2021.pdfEnglishState Targeted Program
Growth of ZnO Microcrystals from Zn and Cu Chloride Precursors.A. Jishiashvili, Z. Shiolashvili, D. Jishiashvili, A. Chirakadze, N. Makhatadze.articleBulletin of the Georgian National Academy of Sciences, vol. 15, no. 2, 53-58 ISSN - 0132 - 1447 http://science.org.ge/bnas/vol-15-2.htmlEnglishGrant Project
Development and Testing of Nanoparticles for Treatment of Cancer Cells by Curie Temperature Controlled Magnetic Hyperthermia.A.Chirakadze, N.Mitagvaria, D. Jishiashvili, M. Devdariani, G. Petriashvili, L. Davlianidze, N. Dvali, K. Chubinidze, A. Jishiashvili, Z. Buachidze, I. Khomeriki. articleBulletin of the Georgian National Academy of Sciences, vol. 15, no. 1, 91-98, 2021. ISSN - 0132 - 1447 http://science.org.ge/bnas/vol-15-2.htmlEnglishState Targeted Program
Scanning electron microscopic study of ZnO crystallites.A. Jishiashvili, Z. Shiolashvili, D. Jishiashvili, N. Makhatadze, A. Chirakadze, V. Gobronidze. . articleNano Studies, 20, 105-110, 2020 წ.Aims & Scope: 19878826; Indexed By: Impact Factor (IF): 2014 0.567 Website: Print ISSN: 1987-8826 1987 8826 ISSN: 1987 8826 ISSN-L: 19878826 1987 8826 ISSN 1987 − 8826 SSN / eISSN:2667-9930 EnglishState Targeted Program
A study of the condensed coppercontaining nanomaterials.D. Jishiashvili, Z. Shiolashvili, N. Makhatadze, A. Jishiashvili, A. Chirakadze, V. Gobronidze. articleNano Studies, 2019, 19, 285-290Impact Factor (IF): 2014 0.567 Website: Print ISSN: 1987-8826 1987 8826 ISSN: 1987 8826 ISSN-L: 19878826 1987 8826 ISSN 1987 − 8826 SSN / eISSN:2667-9930 EnglishState Targeted Program
Vapor-phase synthesis of copper-based nanostructures.D.Jishiashvil, A.Chirakadze, Z.Shiolashvili, N.Makhatadze, A.Jishiashvili, V.Gobronidze. conference proceedingsConference Proceedings – Modern Trends In Physics. ბაქო 01-03 მაისი, 2019. გვ.43–46 ISSN 2522-4352; ISSN / eISSN: 2409-4986 / 2409-4994 EnglishState Targeted Program
Studies of the comparativelylow-temperature synthesis and preliminary toxic characteristics of silver doped lanthanum manganite nanoparticles using conventionaland microwave heating. A.Chirakadze, D.Jishiashvili, N.Mitagvaria, I.Lazrishvili, Z.Shiolashvili, A.Jishiashvili, N.Makhatadze, Z.Buachidze, N.Khuskivade. conference proceedingsConference Proceedings – Modern Trends In Physics. ბაქო 01-03 მაისი, 2019. გვ.47–51 ISSN 2522-4352 EnglishState Targeted Program
Pyrolytic synthesis of boron nitride nanoflakesD. Jishiashvili, Z. Shiolashvili, A. Chirakadze,N. Makhatadze, V. Gobronidze, A. Jishiashvili, K.Gorgadze, D. Kanchaveli. articleNano Studies, 2018, v. 17/18, გვ. 67-70.Aims & Scope: 19878826; Indexed By: Impact Factor (IF): 2014 0.567 Website: Print ISSN: 1987-8826 1987 8826 ISSN: 1987 8826 ISSN-L: 19878826 1987 8826 ISSN 1987 − 8826 EnglishState Targeted Program
Synthesis of indium phosphide / zinc phosphate core-shell nanowires. A. Jishiashvili, Z. Shiolashvili, N. Makhatadze, D.Jishiashvili,b, D. Kanchaveli, D. SukhanovarticleDigest Journal of Nanomaterials and Biostructures. 2018, v. 13, N. 2, 535 – 542.  ISSN / eISSN:1842-3582 EnglishGrant Project
Growth of InP based composite nanowires. D. Jishiashvili, A. Chirakadze, Z. Shiolashvili, N. Makhatadze, A. Jishiashvili, D. Kanchaveli, D. Sukhanov, V. GobronidzearticleJournal of Low Dimensional Systems, 2018, v. 2 (1), 23-27. ISSN 2308-068X; ISSN / eISSN: 1386-9477 / 1873-1759 EnglishGrant Project
New approaches to development of new nanomaterials for magnetic hyperthermia of cancer cells and prospectives of combined treatment of cancer in GeorgiaA. Chirakadze, D. Jishiashvili, Z. Buachidze, K. Gorgadze, Z. ShiolashvilI,A. Jishiashvili, N. Mitagvaria, I. Lazrishvili. articleJournal of Low Dimensional Systems, 2018, v. 2 (1), 8-22. ISSN 2308-068X; ISSN / eISSN: 1386-9477 / 1873-1759 EnglishGrant Project
Influence of water on the growth process of Ge3N4 and InP nanowiresJishiashvili A., Shiolashvili Z., Makhatadze N., Jishiashvili D., Chirakadze A., Sukhanov D., Kanchaveli D. articleOriental Journal of Chemistry, 2017, 33, 3,1103-1110. ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039http://dx.doi.org/10.13005/ojc/330306 EnglishState Targeted Program
Growth of nitride and phosphide nanowires in the presence of water moleculesD. Jishiashvili, Z. Shiolashvili, N. Makhatadze, A. Jishiashvili, D. Sukhanov, V. Gobronidze. conference proceedingsProceedings of ICANM 2016: Int. Conf. Exh. Adv. Nano Mater., 2016, Montreal, IAEMM, 73-80. ISSN / eISSN: 1947-5411 / 1947-542X EnglishState Targeted Program
Development of low temperature technology for the growth of wide band gap semiconductor nanowires. D. Jishiashvili, Z. Shiolashvili, A. Chirakadze, A. Jishiashvili, N. Makhatadze, K. GorgadzearticleAIMS Materials Science, 3(2), 2016. pp. 470-485. Impact Factor (IF): 2.6 Issue 2: 470-485; ISSN 2372-0484  doi: 10.3934/matersci.2016.2.470EnglishState Targeted Program
On the morphology of indium phosphide based nanowires.D. Jishiashvili, L. Chkhartishvili, Z. Shiolashvili, N. Makhatadze, A. Jishiashvili, B. BuadzearticleNano Studies, V.12. 2015, pp.79-86.Indexed By: Impact Factor (IF): 2014 0.567 Website: Print ISSN: 1987-8826 1987 8826 ISSN: 1987 8826 ISSN-L: 19878826 1987 8826 ISSN 1987 − 8826; ISSN / eISSN: 2667-9930 EnglishState Targeted Program
Temperature-dependent morphological changes in InP based nanowires.L.Chkhartishvili, D. Jishiashvili, Z. Shiolashvili, N. Makhatadze, A. Jishiashvili, B. BuadzearticleICANM2015 Proceedings (August 10-12, 2015, Ottawa, Canada). A publication of the International Academy of Energy, Minerals & Materials. 937 Portobello Blvd. PO Box 17029, Ottawa, Ontario. 2015, pp.1-7. ISSN / eISSN: 1674-4799 / 1869-103X EnglishState Targeted Program
Vapor-Solid growth of InP and Ga2O3 based composite nanowiresD.Jishiashvili, Z. Shiolashvili, N. Makhatadze, A.Jishiashvili, V.Gobronidze, D. Sukhanov. article    European Chemical Bulletin, V.4, N1, 2015, 24-29. ISSN 2063-5346 EnglishState Targeted Program
Growth mechanism and morphology of germanium nitride nanowires D.Jishiashvili, L. Chkhartishvili, Z. Shiolashvili, N. Makhatadze, V.Gobronidze, A. Jishiashvili.article Nano Studies, V.10, 2014, 55-63. Impact Factor (IF): 2014 0.567 Website: Print ISSN: 1987-8826 1987 8826 ISSN: 1987 8826 ISSN-L: 19878826 1987 8826 ISSN 1987 − 8826; ISSN / eISSN:2667-9930 EnglishState Targeted Program
Formation of Germanium Nitride Nanowires on the Surface of Crystalline Germanium. D. Jishiashvili1, L. Kiria, Z. Shiolashvili N. Makhatadze, E. Miminoshvili, A. Jishiashvili. articleJournal of Nanoscience. V. 2013, 2013, Article ID 641734, 10 p Article ID 641734  http://dx.doi.org/10.1155/2013/641734 EnglishState Targeted Program
Ge- and In-based one-dimensional nanostructures: Self-catalytic growth D.Jishiashvili, L.Chkhartishvili, Z. Shiolashvili, N. Makhatadze, A. Jishiashvili, V.Gobronidzearticle Nano Studies, V.7, 2013, 47-51.Impact Factor (IF): 2014 0.567 Website: Print ISSN: 1987-8826 1987 8826 ISSN: 1987 8826 ISSN-L: 19878826 1987 8826ISSN 1987 − 8826 SSN / eISSN: 2667-9930 EnglishState Targeted Program
Pyrolytic growth of one-dimensional oxide and nitride nanomaterials. D.Jishiashvili, L.Kiria, Z. Shiolashvili, N. Makhatadze, E. Miminoshvili, A.Jishiashvili, D. Sukhanovarticle Nano Studies. V. 6, 2012. pp. 115-120.Impact Factor (IF): 2014 0.567 Website: Print ISSN: 1987-8826 1987 8826 ISSN: 1987 8826 ISSN-L: 19878826 1987 8826 ISSN 1987 − 8826; ISSN / eISSN:2667-9930 EnglishGrant Project
The morphology of vapor–liquid–solid grown nitride nanowires. D. Jishiashvili, L. Kiria, Z. Shiolashvili, N. Makhatadze, A. Jishiashvili, D. Sukhanovconference proceedingsProceedings of the 2nd International Conference “Nanotechnologies” Nano-2012. Tbilisi, Georgia, 2012; pp:119 ISBN 978-9941-436-47-5; ISSN / eISSN:2667-9930 https://dspace.nplg.gov.ge/bitstream/1234/141858/1/Nano_2012.pdfEnglishState Targeted Program
Growth of germanium nitride nanowires. D. Jishiashvili, Z. Shiolashvili, N. Makhatadze, L. Kiria, A. Jishiashvili, V. Gobronidze. articleNano Studies. V.4,, 2011, 133-138 ISSN 1987 − 8826 ; ISSN / eISSN:2667-993 https://dspace.nplg.gov.ge/bitstream/1234/140689/1/Nano_Studies_2011_N4.pdfEnglishState Targeted Program
Tetragonal germanium nanocrystals obtained by growing germanium nitride nanowires D. Jishiashvili, Z. Shiolashvili, N. Makhatadze; L. Kiria, A. Jishiashvili, V. Gobronidze. articleMicrowave & Telecommunication Technology,IEEE Catalog number: CFP11788, 2011, 731-732. IEEE Catalog number CFP11788-ART; ISSN / eISSN: 2220-9506 / 2414-0473 RussianState Targeted Program
Synthesis of tetragonal germanium nanocrystals embedded in amorphous matrices.ნ.მახათაძე, ზ.შიოლაშვილი, ვ.გობრონიძე, ა.ჯიშიაშვილი, დ.სუხანოვი. conference proceedingsნანოქიმიისა და ნანოტექნოლოგიების პირველი საერთაშორისო კონფერენციის მასალები 2010წ. გვ 186-192 ISBN: 978-9941-416-34-7 EnglishState Targeted Program

5th International Conference on Engineering Technology and Applied Sciences (ICETAS)Sarajevo, Bosnia and Herzegovina20212–6 აგვისტოICETAS 2021A scanning electron microscopy study of branched ZnO microcrystalsoral

The vapor growth of ZnO microcrystals was studied using the Scanning Electron Microscopy and Energy Dispersive Spectroscopy. The microcrystals were grown by annealing ZnO, CuO and ammonium chloride powders. As a result, the ZnCl2, ZnO and CuCl vapor was formed and condensed on Si substrate, which was gradually heated up to 350oC. It was established that the growth proceeded in two stages. Beginning from 240oC, the CuCl-ZnCl2 eutectic droplet with a low melting point was formed. With time, the droplet was oversaturated with ZnO, and ZnO's solid nuclei were precipitating from it. They served as seeds for the formation of hexagonal ZnO microrods, which were growing along the c-axis ([0001] direction) by the slow, thermodynamically driven Vapor–Solid mechanism. As a result, the rod-like ZnO microstructures were produced on Si substrate. The second stage of growth started when the substrate temperature reached 300oC. At this temperature, the secondary nucleation took place on the prism surfaces of ZnO microrods, causing brunched structures. The ZnO brunches were growing again along the c-axes, forming elongated 1D type microcrystals. In contrast to the slow growth of primer ZnO microrods, at elevated temperatures the ZnO brunches were growing significantly faster. This kinetically driven process caused the vanishing of the fast growing (0001) plains, resulting in the tapering of ZnO microcrystal tips

https://www.icetas.com/sites/default/files/icetas_2021_book_of_abstracts.pdf
6th International Conference “Nanotechnology”Tbilisi, Georgia20214-7 ოქტომბერიTSU and Cybernetics InstituteSynthesis of nanomaterials from the gas mixture containing NH3 and HCloral

The purpose of this work was to study the ability of an NH3 + HCl gaseous mixture to produce copper-based nanomaterials. A gas mixture containing both reactants can be easily produced by heating the solid powder of NH4Cl at temperatures exceeding 340 °C. The vertical quartz reactor with CuO source on its bottom was first evacuated and then heated up to 750 °C. After reacting with gas mixture the volatile species were formed and condensed on the Si substrate placed in the cold zone above the CuO source. The obtained nanomaterials were analyzed by the transmission and scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. Nanomaterials with different shapes and compositions were synthesized depending on the Si substrate temperature, which was changed in the range of 250 – 500 °C. These materials include CuO, CuCl, and CuCl2 nanocrystals and dendrite-like structures. The most interesting synthesized nanostructures were the elongated surface nanobubbles with the average wall thickness of 80 nm and heights up to tens of micrometers. They were formed of CuCl, which is strongly hygroscopic and degrades in the atmosphere. The surface bubbles may be blown out due to the decomposition of two chemicals that are formed in the reactor, namely, Cu2OCl2 and CuCl2. The detailed thermochemical analyses of reactions led us to the conclusion that the thermal decomposition of CuCl2, accompanied by the release of Cl2, is the most probable reason for the formation of surface bubbles. It was shown that the chemical activity of the NH3 + HCl gaseous mixture can be farther increased by introducing hydrazine (N2H4) vapor into the reactor, which easily decomposes to nitriding (NH, NH2) and reducing (H2, atomic H) species.

http://www.nano2020.gtu.ge/wp-content/uploads/2021/11/Book-of-Abstracts-of-the-GTU-nano-2021.pdf გვ57
6th International Conference “Nanotechnology”Tbilisi, Georgia20214-7 ოქტომბერიTSU and Cybernetics InstituteBranched ZnO microcrystals. A Scanning Electron Microscopy study. oral

The vapor growth of ZnO microcrystals was studied using the Scanning Electron Microscopy and Energy Dispersive Spectroscopy. The microcrystals were grown by annealing ZnO, CuO and ammonium chloride powders. As a result, the ZnCl2, ZnO and CuCl vapor was formed and condensed on Si substrate, which was gradually heated up to 350oC. It was established that the growth proceeded in two stages. Beginning from 240oC, the CuCl-ZnCl2 eutectic droplet with a low melting point was formed. With time, the droplet was oversaturated with ZnO, and ZnO's solid nuclei were precipitating from it. They served as seeds for the formation of hexagonal ZnO microrods, which were growing along the c-axis ([0001] direction) by the slow, thermodynamically driven Vapor–Solid mechanism. As a result, the rod-like ZnO microstructures were produced on Si substrate. The second stage of growth started when the substrate temperature reached 300oC. At this temperature, the secondary nucleation took place on the prism surfaces of ZnO microrods, causing brunched structures. The ZnO brunches were growing again along the c-axes, forming elongated 1D type microcrystals. In contrast to the slow growth of primer ZnO microrods, at elevated temperatures the ZnO brunches were growing significantly faster. This kinetically driven process caused the vanishing of the fast growing (0001) plains, resulting in the tapering of ZnO microcrystal tips.

http://www.nano2020.gtu.ge/wp-content/uploads/2021/11/Book-of-Abstracts-of-the-GTU-nano-2021.pdf გვ56
World Multidisciplinary Earth Sciences SymposiumPrague (Czech Republic20199-13 სექტემბერი Growth of indium digermanate nanowires for gas sensor applications. oral

Gas sensors employing nanowires attracted great interest during the last two decades due to their extremely high sensitivity, which for some gases reach even tens of ppb levels. The purpose of this work was to develop new technology for the growth of In2Ge2O7 nanowires. The second goal was to fabricate the nanowire networkbased gas sensors on these nanowires and examine their characteristics. The nanowires were synthesized using the vapour-solid growth mechanism realized in the gaseous ambient formed after pyrolytic decomposition of the moistened hydrazine (N2H4), containing water (3-10 mol.%). After pyrolysis, the ambient was simultaneously consisting of such oxidizing, reducing and nitriding species like O2, H2O, NH and NH2 radicals, atomic hydrogen, ammonia and hydrogen molecules. Annealing of In+Ge solid sources in such ambient caused the formation of volatile suboxide precursors (In2O and GeO) that were accomplishing the mass transfer to the substrate, located in the cold zone, and subsequent growth of nanowires. It was shown that the process temperature has a great influence on the composition and morphology of nanowires. At C, only indium oxide nanowires were formed that were growing from the In self°temperatures below 400 catalyst. The mixture of pure Ge and In2O3 nanowires were obtained when the substrate temperature was in C the In2Ge2O7 nanowires were synthesized, which were decorated with InN°C. At 450°the range of 400-420 nanocrystals. Scanning and transmission electron microscopy, together with X-ray diffraction and energy dispersive X-ray spectroscopy were used to study the composition, structure and morphology of synthesized nanowires. 

https://mess-earth.org/files/WMESS2019_Book.pdf
International Conference on “Modern Trends in Physics”, Baku, Azerbaijan20191-3 მაისიVapor-phase synthesis of copper-based nanostructuresoral

The vapor-phase synthesis of Cu-based nanomaterials using inorganic volatile Cu precursors is a key for controlling the composition, morphology and structure of copper containing nanomaterials. In this paper, we have shown that annealing of a solid Cu or CuO sources in the ambient of ammonium chloride and hydrazine decomposition products leads to the formation of volatile CuCl species. The mass transfer from source to the substrate, which was located in the “cold” zone of the reactor, was accomplished by these CuCl species. After condensation on Si substrate heated up to 400°C, they were interacting with hydrazine and ammonium chloride decomposition products forming, the agglomerated Cu microcrystals in case of Cu source. Different nanomaterials were synthesized when CuO was used as a source. These nanomaterials included Cu-based nanocrystals, nanowires and elongated microbubbles. Further investigations are planned to determine the composition and structure of these nanomaterials

http://static.bsu.az/w28/MTPhysics/MTPhysics2019/Konference%20MTP%20proceeding%20(New).pdf
International Conference on “Modern Trends in Physics”, Baku, Azerbaijan20191-3 მაისიStudies of the comparatively low-temperature synthesis and preliminary toxic characteristics of silver-doped lanthanum manganite nanoparticles using conventional and microwave heating. oral

The research is dedicated to microwave and conventional methods of solution combustion synthesis of the relatively new nanomaterial proposed for magnetic hyperthermia of cancer cells and preliminary assessment of the toxicity of developed materials based on the behavioral methods and techniques at the levels far below of commonly registered by means of usualy and widely applied assays for humans. Farther research is needed to optimize the methods of synthesis of silver doped lanthanum manganites with required characteristics.

http://static.bsu.az/w28/MTPhysics/MTPhysics2019/Konference%20MTP%20proceeding%20(New).pdf
5 th International Conference “ Nanotechnologies” NANO-2016Tbilisi, Georgia201819 – 22 ნოემბერიSynthesis of nitride nanomaterials in presence of hydrazine and ammonium chloride vaporposter

The formation of crystalline nitride materials is a complicated task, which usually needs the high temperature processes and the application of active nitriding precursors. Previously, we have developed the hydrazine-based technology for producing such nitride nanomaterials as

germanium and indium nitrides. The purpose of this work was to further improve this technology by adding the ammonium chloride (NH4Cl) to hydrazine (N2H4), and to investigate the formation of Ge and boron nitrides using this technology. The germanium nitride was chosen as a model material, because its formation in a poor hydrazine was studied in details, allowing for the comparative study of differences between the

 hydrazine-assisted and hydrazine+ammonium chloride-based processes. The interest for the growth of BN nanomaterials was caused by its unique physical properties and the ability of hBN to form the layered 2D nanostructures. The grown nanomaterials were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS). The analysis of thermochemical reactions that involved the precursor existing in the reactor revealed that in the case of Ge and B sources the reactions that lead to the formation of Ge3N4 and BN are thermodynamically most favorable. The nanostructures containing BN layers were synthesized on Si substrate during 20 hours at 700°C. They were also subjected to Rapid Thermal Annealing. The formation of h-BN was confirmed by XRD and EDS analysis. The thickness of BN layers was well below 100 nm. As for germanium nitride, the α-Ge3N4 nanowires were synthesized on Ge substrate at 440 °C. This synthetic temperature is by 60 and 410 °C lower than the growth temperature of the same material using hydrazine or ammonia. The obtained results clearly demonstrated that in the vapor of a mixture of NH4Cl+ N2H4 the active nitriding precursors are formed, which enable the low temperature growth of nitride nanomaterials. 

https://dspace.nplg.gov.ge/bitstream/1234/312052/1/Nano_2018.pdf
4th International Conference “ Nanotechnologies” NANO-2016Tbilisi, Georgia201624-27 ოქტომბერი Synthesis of In2O3 nanowires for gas sensor applications.oral

Gas sensors based on oxide-semiconductor nanowires have been a subject of extensive research because of their potential application in detecting several inflammable, toxic and odorless gases. Among them, In2O3 has been found to have a pronounced sensitivity to such gases as NO2, NH3, O3, Cl2, CO, H2, C2H5OH and other species. Sensing NO2 in the atmosphere has assumed great importance because of the serious problem of atmospheric air pollution caused by car exhaust and other sources. Recent developments showed that In2O3 nanowires doped with different atoms exhibit superior selectivity to NO2, H2S and some other gases with short response and recovery times [1 – 4]. In this work we describe the low-temperature synthesis of In2O3 nanowires, fabrication of a simple nanowire-network based gas sensor and its application for sensing NO2.

https://dspace.nplg.gov.ge/bitstream/1234/233437/1/4th%20International%20Conference%20%e2%80%9cNanotechnologies%e2%80%9d%202016
ICANM2016 International conference & exhibition on advanced and nanomaterials Montreal, Canada20161-3 აგვისტოGrowth of nitride and phosphide nanowires in the presence of water molecules. poster

The germanium nitride and InP nanowires were grown using the pyrolytic decomposition products of hydrazine (N2H4), which was containing 3 mol.% H2O. In separate set of experiments the quartz microbalance was used to study the interaction of water containing hydrazine with Ge sample in the temperature range of 450-650°C. It was established that up to 500°C only water molecules interact with Ge, forming volatile suboxide GeO. At higher temperatures GeO molecules and nitrogen precursors, produced after decomposition of hydrazine, form crystalline Ge3N4 nanowires on the Ge surface. Analysis of thermo-chemical reactions reveal that in the presence of water molecules and nitrogen precursors the formation of nitride is thermodynamically favourable than the synthesis of germanium dioxide. When InP was annealed in hydrazine at 440°C the water molecules were producing volatile In2O. After reaching the Si substrate these molecules were interacting with phosphorus vapor producing InP nanowires

http://icanm2016.iaemm.com/
ICANM2015 International conference & exhibition on advanced and nanomaterials Ottawa, Ontario, Canada.201510-12 აგვისტოTemperature-dependent morphological changes in Inp based nanowires. oral

The InP based nanowires were produced by direct annealing of crystalline InP sources in hydrazine (N_2H_4) vapor and subsequent condensation of volatile spices onto the substrates. The morphology and sizes of nanowires showed strong dependence on the growth temperature. In the temperature range of 440 – 540 °C the morphology of InP nanostructures were changed from true nanowires with minimum diameters of ca. 25 nm formed at 440 °C, to faceted, several micrometer size large crystalline blocks of InP growing at 540 °C simultaneously with the rhombus decorated zigzag shaped InP nanowires with extended surfaces. The nanowires growth mechanism also varied with the temperature. In the range of 440 – 500 °C they were growing through the Vapor–Solid mechanism. At 540 °C the Vapor–Solid and Vapor–Liquid–Solid mechanisms coexisted forming large elongated blocks of indium phosphide together with zigzag shaped InP nanowires.

https://www.researchgate.net/publication/282443159_Temperature-dependent_morphological_changes_in_InP_based_nanowires
201411-13 აგვისტო Investigation of vapor-liquid-solid grown tapered germanium nitride nanowires. . oral

The tapered single-crystalline α-Ge_3N_4 nanowires were grown simultaneously on the surfaces of crystalline Ge source and Si substrate located at 3 mm above it. The growth was performed at 500 – 560 °C in the presence of hydrazine (N_2H_4) vapor containing 3 mol. % water. The nanowires were grown through the vapor–liquid–solid mechanism using Ge catalyst. Produced nanowires were tapered. However, the direction of taper was different for nanowires grown on Ge and Si. The difference in tapering was explained by differences in the fluxes of volatile GeO molecules at the beginning of growth process and at the stage of temperature stabilization. It was found that at the surface of Si substrate a part of GeO molecules was reduced to pure Ge due to the presence of hydrogen in the pyrolytic decomposition products of hydrazine. As a result the chain-like Ge nanostructures were formed together with Ge_3N_4 nanowires.

https://www.researchgate.net/publication/282443275_Investigation_of_vapor-liquid-solid_grown_tapered_germanium_nitride_nanowires
International Conference NANO-2014 Tbilisi, Georgia201420-24 ოქტომბერიA study of shell formation in InP based composite nanowire.oral

The composite nanowires comprising crystalline semiconductor cores surrounded with amorphous shells are considered as promising materials for the fabrication of nanowire based transistors, photovoltaics, gas sensors, catalysts for direct water splitting by sunlight etc. Recently we have developed the new pyrolytic technology and produced some core–shell 1D nanomaterials using the sublimation of products, formed after thermal annealing of InP + Zn source in the N2H4 + 3 mol. % H2O vapor [1 – 3]. The nanowires were synthesized from the gaseous phase on the Si substrate that was located in the “cold zone” just above the source.. The purpose of this work was to study the mechanism of the formation of shells in these composite nanowires. 

https://dspace.nplg.gov.ge/bitstream/1234/141860/1/Nano_2014.pdf
. Iinternational Conference “Tbilisi- spring-2014” Tbilisi, Georgia2014 5-9 მარტიNuclear Radiation Nanosensors and Nanosensory Systems.Synthesis of Nanowire Networks for Chemical Gas Sensor Applications. Nuclear Radiation Nanosensors and Nanosensory Systems.oral

The development of new gas sensors and sensor materials is an important issue for different fields of human activities, including medicine, science, technology, environment protection etc. Nanowires are considered as one of the most suitable materials for the fabrication of modern gas sensors because of their unique physical and chemical properties, together with clearly manifested quantum features. One of the technical solutions for the fabrication of gas sensors is the formation of “nanowire network-based” sensor. In this work, we present the data on the growth of In2O3 nanowires using the pyrolytic technology, which was performed in the presence of hydrazine vapor diluted with 5 mol.% water. The nanowire network was deposited on the interdigitated gold electrodes with 5 mkm gapping that were deposited onto the glass substrate. It was found, that the fabricated gas sensor can detect ammonia at the level of hundred ppb-s.

https://slideplayer.com/slide/8808130/
ICANM2013 International Conference on Advanced and Nano Materials.Quebec, Canada2013 ICANM 2013Self-catalytic growth of germanium and indium based 1D nanostructures. oral

The single crystal In2O3 and Ge3N4 nanowires were synthesized using the indium or germanium sources in new ambient comprising hydrazine decomposition products diluted with 3 mol.% water. This ambient was simultaneously containing oxidizing, nitriding and reducing active precursors. In spite of this only In2O3 nanowires were produced in case of In source, and only α-Ge3N4 nanowires were formed when Ge source was used. These active precursors provided formation of volatile suboxides of source materials, their flow to the Si substrate while a part of them was reduced to In or Ge catalyst droplets, and another part fed catalyst to grow the nanowiress trough the Vapor-Liquid-Solid mechanism. The growth temperature for In2O3 nanowires was lowered down to 420°C, while the Ge3N4nanowires were grown at 480°C which is by 370°C lower than the temperature indicated in the literature. The nanowires were characterized by a high crystallinity and the minimum thickness of 7 nm.

http://iaemm.com/ICANM2013
EC funded GEO RECAP project (N266155) networking and IDEALIST project twinning meetingsTbilisi, Georgia201227-28 ივნისიSTU Hydrazine-assisted routes to 1D nitride and oxide nanomaterials for environmental and energy applicationsoral

The hidrazine (N2H4) vapor was used to produce 1D nanomaterials. Hydrazine easily decomposes at the surfaces of semiconductors producing chemically active NH2 species, because these surfaces serve as catalysts for the decomposition. This process is quite complicated and byproducts include H2, NH3, NH and other active species. The water content in hydrazine determines the composition of a final product. In2O3nanowires were used for the fabrication of nanowire network based gas sensors. It was able to detect the ammonia trases at the level of hundreds of ppb.The main result of this work: the developed hydrazine based pyrolytic technology is a viable method for producing oxide, nitride and phosphide 1D nanomaterials (nanowires, nanobelts, core-shell structures and nanotubes);

EC Funded GEO RECAP Project (N266155) 2nd Training Event and Final MeetingTbilisi, Georgia201215-16 ოქტომბერისტუDevelopment of InP based core-shell nanowires for advanced nanoelectronic devicesoral

Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H2O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP–Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up nteresting application perspectives in nanoelectronics.

. NewMaRE: New Materials and Renewable Energy. New one-dimensional nanomaterials grown in hydrazine vapour. International School Tbilisi, Georgia2012 organized by the Southampton University UK, and Georgian Technical University.New one dimensional nanomaterials grown in hydrazine vapor. oral

The purpose of this work was to show the ability of hydrazine vapor to produce nitride, oxynitride and oxide 1D Nanomaterials. Hidrazine (N2H4) is a chemically very active reagent, which finds different applications. We used hydrazine for producing nitride nanomaterials by the pyrolysis at 500°C, in combination with Ge, InP and In source materials. It was found that the water content in hydrazine determines the composition of a final product. When the H2O content does not exceed 3 mol.%, the pure nitride nanowires of Ge3N4 and InN were produced. At elevated water concentrations the oxide and oxinitride nanomaterials were fabricated.

The main result of this work: the developed hydrazine based pyrolytic technology provides a simple way to fabricate different ID nanostructures (nanowires, nanobelts, nanocables, nanotubes etc.). The synthesized materials include Ge, Ge3N4, InN, In2Ge2O7, In2O3, Ga2O3, InP, Zn3(PO4)2.

https://www.emis.de/journals/TICMI/vol15/Jishiashvili.pdf
2nd International Conference “Nanotechnologies” Nano-2012Tbilisi, Georgia2012 STUThe morphology of vapor–liquid–solid grown nitride nanowires.oral

The morphology of NWs strongly depends on the growth methods, process parameters and substrates. The purpose of this work was to study the shape and tapering of nitride NWs grown by vapor–liquid–solid (VLS) mechanism on Ge, Si and glass substrates, located in different zones of the pyrolytic reactor tube. The single-crystalline germanium nitride (α-Ge3N4) nanowires were chosen as model material. They were grown directly on the surface of a crystalline Ge source, together with glass and Si substrates located at 200 – 500 μm above it. During the first 15 min the temperature of Ge source was raised up to 500 – 585 °C and then stabilized, while the temperature of substrates above was kept by 100 – 150 °C lower. The nitration was carried out in the hydrazine (N2H4) vapor containing 3 mol. % of water. The mass transfer was performed by volatile GeO molecules formed by the interaction of Ge source and water. The nitration of GeO ensured the growth of Ge3N4 nanowires.

https://dspace.nplg.gov.ge/bitstream/1234/141858/1/Nano_2012.pdf
21st International Crimean Conference “Microwave and telecommunication Technology” (CriMiCo’2011) Sevastopol, Ukraine201112-16 სექტემბერიTetragonal Ge nanocrystals formed during the growth of Ge3N4 nanowires. oral

The Ge nanocrystals with tetragonal structure and maximum diameters of 12 nm were synthesized on the tips of Ge3N4 nanowires. These nanowires were grown by the Vapor-Liquid-Solid technology using the Ge self-catalyst. After the process was over, the cooling of a molten Ge droplet caused the formation of a solid natural oxide shell, which was covering the liquid Ge droplet core. The further solidification of a Ge core proceeded in a fixed volume. As is known, the Ge expands during solidification. Accordingly, the internal stress of 1.5 GPa appeared in the Ge core during its solidification. This resulted in the formation of tetragonal Ge particles with 12 atoms in the unit cell, instead of the diamond type Ge nanocrystals with 8 atoms per unitl cell. It was found that if the size of the droplet exceeded 12 nm, then it produced the amorphous Ge nanoparticle.

IEEE #: CFP11788-POD ISBN: 9781457708831
The European Future Tachnologies Conference and Exhibition-FET11Budapest, Hungary20114-6 მაისიDevelopment of the new one dimensional nanomaterials for ultrasensitive gas sensorsoral

Gas sensors based on oxide-semiconductor nanowires have been a subject of extensive research because of their potential application in detecting several inflammable, toxic and odorless gases. Among them, In2O3 has been found to have a pronounced sensitivity to such gases as NO2, NH3, O3, Cl2, CO, H2, C2H5OH and other species. Sensing NO2 in the atmosphere has assumed great importance because of the serious problem of atmospheric air pollution caused by car exhaust and other sources. Recent developments showed that In2O3 nanowires doped with different atoms exhibit superior selectivity to NO2, H2S and some other gases with short response and recovery times. In this work we describe the low-temperature synthesis of In2O3 nanowires, fabrication of a simple nanowire-network based gas sensor and its application for sensing NO2. The simple gas sensor was fabricated on Si + SiO2 substrate by depositing Ti / Au interdigitated electrodes and connecting the electrodes by bridging nanowire networks, formed after drying the droplet of acetone with dissolved In2O3 nanowires. The fabricated gas sensor was able to detect the concentration of NO2 molecules down to 5 ppm level at 200°C, with quite short and stable response and recovery time

http://www.fet11.eu/images/stories/programme/Exhibition_guide.pdf
International Scientific Conference - Modern Issues of Applied Physics.Tbilisi, Georgia201130 მარტიFabrication of Indium based nanowires for gas-sensor applications oral

The nanowire-based gas sensors are considered as the most advanced technical solutions for increasing the sensitivity far below ppm levels. There is a great need for such sensors in the industry, medicine, environmental protection, etc. The purpose of this work was to develop new technology for the fabrication of indium oxide and indium nitride one-dimensional nanomaterials and to test the gas sensor properties fabricated on the bases of these nanomaterials.  In2O3, InN, InN and In2Ge2O7 nanowires were synthesized using the developed hydrazine-based technology. After fabricating and testing of gas sensors, it was established that the gas sensor on In2O3 nanowires had the best characteristics because it allowed the reliable detection of CH4 molecules at the level of 10 ppm

Modern ecological problems and Caucasus. The International Conference ECOTbilisi, Georgia20104-6 ივლისიNanowire-based ultrasensitive gas sensors.oral

Gas sensors based on oxide-semiconductor nanowires have been a subject of extensive research because of their potential application in detecting several inflammable, toxic and odorless gases. Among them, In2O3 has been found to have a pronounced sensitivity to such gases as NO2, NH3, O3, Cl2, CO, H2, C2H5OH and other species. Sensing NO2 in the atmosphere has assumed great importance because of the serious problem of atmospheric air pollution caused by car exhaust and other sources. Recent developments showed that In2O3 nanowires doped with different atoms exhibit superior selectivity to NO2, H2S and some other gases with short response and recovery times. In this work we describe the low-temperature synthesis of In2O3 nanowires, fabrication of a simple nanowire-network based gas sensor and its application for sensing NO2. The simple gas sensor was fabricated on Si + SiO2 substrate by depositing Ti / Au interdigitated electrodes and connecting the electrodes by bridging nanowire networks, formed after drying the droplet of acetone with dissolved In2O3 nanowires. The fabricated gas sensor was able to detect the concentration of NO2 molecules down to 5 ppm level at 200°C, with quite short and stable response and recovery time.

1st Georgian Conference on Nanochemistry and NanotechnologiesTbilisi, Georgia201023-24 მარტი საქართველოს საპატრიარქოს წმინდა ანდრია პირველწოდებულის სახელობის ქართული უნივერსიტეტიSynthesis of tetragonal germanium nanocrystals embedded in amorphous matricesoral

Previously it was established that the Vapor-Liquid-Solid growth of Ge3NT4 nanowire in the hydrazine vapor proceeds with the assistance of Ge boll-tip catalyst. In the present work we found that for the Ge catalyst sizes not exceeding 12 nm the post-growth cooling causes its crystallization in the high-pressure tetragonal form. At larger sizes of catalyst droplet the solidification proceeds with the formation of an amorphous Ge nanocrystal. We suppose, that during the cooling of a tip the amorphous Ge02 sheath around the Ge core is first solidified encapsulating liquid Ge droplet in a fixed volume and restricting its volume expansion during solidification (the volume of molten Ge increases by 6% when it crystallizes in the diamond structure 1). Upon further cooling the crystallizing Ge core embedded in GeCL sheath influences the high compressive pressure which is sufficient to form a tetragonal structure in droplets with sizes up to 12 nm.

ნანოქიმია, ნანოტექნოლოგიები, NANO-2010, თბილისი 2010 ; ISBN: 978-9941-416-34-7 https://dspace.nplg.gov.ge/bitstream/1234/141855/1/Nano_2010.pdf
International Semiconductor Conference CAS-2009Sinaia, Romania.200912-14 ოქტომბერიSynthesis of germanium nitride nanowires.oral

The two types of single-crystalline alpha-Ge3N4 nanowires (NWs) were synthesized at 550degC by annealing the crystalline Ge sample in the hydrazine vapor containing 3 mol.% of water. The mass transfer was accomplished by volatile GeO molecules. The tapered NWs were grown by the vapor-liquid-solid method with ~8 nm Ge catalyst droplet surrounded by ~5 nm thick GeOx shell. NWs with uniform diameters were formed on the same sample by the oxide-assisted growth method. In the photoluminescence spectra of NWs the five peaks were observed in the blue-green region with energies close to the photoluminescence peaks of germanium suboxides.

https://www.researchgate.net/publication/251907458_Synthesis_of_germanium_nitride_nanowires
The International Conference For NanoTechnology Industries ( NANO Conference 2009)Riyadh, Saudi Arabia20095-7 აპრილი King Saud UniversityVapor-Liquid Solid (VLS) Growth of Tapered Germanium Nitride Nanowires.oral

Nanowires are considered as one of the most suitable materials for the fabrication of modern nanodevices because of their unique physical and chemical properties, together with clearly manifested quantum features. The Vapor-Liquid-Solid (VLS) mechanism of their growth is a well-established and popular method of their synthesis. Under some growth conditions, the tapering of VLS-grown nanowires is observed, which a technological drawback is. In this work, we have studied the reasons for the tapering of Ge3N4 nanowires grown by the self catalyzed VLS method. The technology was based on the application of active species, formed after pyrolytic decomposition of N2H4 3 mol.% water. These spaces were able to form volatile GeO molecules together with reducing NH radicals and hydrogen. It was found, that in Ge3N4 nanowires, grown on Ge source, the diameters were gradually decreased with growth time. The inverse tapering was observed in nanowires grown by the same VLS method on the Si substrate. It was established that during the growth process, which started at 350°C, the temperature was permanently raising with time, finally reaching the value of 500°C. This caused the time-dependent redaction of catalyst diameters for nanowires grown on Si substrate and their tapering. In contrast to this, for nanowires growing on Si substrate, the catalyst diameter was increased with time, due to more intense evaporation of GeO species and their reduction on the catalyst surface. As a result, the catalyst of nanowires that were growing on Si substrate was gradually increasing, thus increasing the diameter of Ge3N4 nanowires.

https://nano.ksu.edu.sa/sites/nano.ksu.edu.sa/files/imce_images/nano_first_circular.pdf

Web of Science:
Scopus: Scopus ციტირების ინდექსი -2.00 + h-ინდექსი -1.00 Web of science ციტირების ინდექსი -1.00+h-ინდექსი-0.00
Google Scholar: Google scholar *ციტირების ინდექსი -8.00+*h-ინდექსი-2.00

Doctoral Thesis Referee


Master Theses Supervisor


Doctoral Thesis Supervisor/Co-supervisor


Scientific editor of monographs in foreign languages


Scientific editor of a monograph in Georgian


Editor-in-Chief of a peer-reviewed or professional journal / proceedings


Review of a scientific professional journal / proceedings


Member of the editorial board of a peer-reviewed scientific or professional journal / proceedings


Participation in a project / grant funded by an international organization


Develop new technologies for nanofiber augmentation and manufacture gas sensitive sensors. # 6204Center for Science and Technology in Ukraine (STCU) უკრაინა 2016-2018Leading performer
Development and research of new nanomaterials for self-regulating (curative temperature-limited) magnetic hyperthermia of cancer cells. # 7089Center for Science and Technology in Ukraine (STCU) უკრაინა 2018-2020Leading performer

Participation in a project / grant funded from the state budget


2016 Doctoral Education Funding Grant PhDF2016-113 2016Leading Performer
Young Scientists Research Grant 2019  N YS-19-087Shota Rustaveli National Science Foundation doctoral grant. PhDF2016_113 2019Principal Investigator

Patent authorship


P 5202Patent of Georgia995D. Jishiashvili, Z. Shiolashvili, N. Makhatadze, V. Gobronidze, A. Jishiashvili. Method of fabricating tetragonal germanium nanocrystals. P 5202, 2011.2011

Membership of the Georgian National Academy of Science or Georgian Academy of Agricultural Sciences


Membership of an international professional organization


Membership of the Conference Organizing / Program Committee


National Award / Sectoral Award, Order, Medal, etc.


Honorary title


Monograph


Handbook


Research articles in high impact factor and local Scientific Journals


Formation of Germanium Nitride Nanowires on the Surface of Crystallin Germanium. დ.ჯიშიაშვილი1, ლ.ქირია, ზ.შიოლაშვილი, ნ.მახათაძე, ე.მიმინოშვილი, ა.ჯიშიაშვილი. Journal of Nanoscience. V. 2013, 2013, Article ID 641734, 10 pState Target Program

 We report on the growth mechanisms of germanium nitride nanowires on the surface of crystalline Ge annealed in hydrazine vapor at different temperatures. In spite of the presence of water (and hence oxygen precursors) in hydrazine, the pure germanium nitride single crystal nanowires were produced in the temperature range of 480-520C. At temperatures below 520C, the clusters were formed first at the Ge surface, followed by the nucleation and growth of nanowires through the Vapor-LiquidSolid mechanism. The Vapor-Solid growth mechanism was observed at temperatures exceeding 520 C, and Ge3N4 nanobelts were produced instead of nanowires with circular cross-sections. All nanostructures have the alpha germanium nitride structure; however, at the nucleation stage, the presence of beta Ge3N4 phase was also observed in the roots of nanowires.

https://www.hindawi.com/journals/jns/2013/641734/ https://doi.org/10.1155/2013/641734
Vapor-Solid growth of InP and Ga2O3 based composite nanowires. დ.ჯიშიაშვილი, ზ.შიოლაშვილი, ნ.მახათაძე, ა.ჯიშიაშვილი, ვ.გობრონიძე, დ.სუხანოვი. European Chemical Bulletin, V.4, N1, 2015, 24-29. State Target Program

InP/Ga 2 O 3 core-shell nanowires were grown on Si substrate at 400 ºC in the hydrazine (N 2 H 4) vapor diluted with 3 mol. % H 2 O. The crystalline InP and solid Ga served as source materials for the growth of nanowires. According to TEM and EDX data the nanowires consisted of InP core with wurtzite-type structure and an amorphous Ga 2 O 3 shell. The minimum diameter of NWs was 14 nm, while the maximum lengths reached several micrometers. The twinned planes appeared in WZ InP core at increased nanowire diameters. Based on the obtained results and possible chemical reactions, the following mechanism was proposed for the growth of core-shell nanowires: pyrolytic decomposition of hydrazine caused the appearance of intermediate NH 2 , NH and H species in the vapor. At elevated temperatures the crystalline InP source was also dissociated to In and phosphorus precursors. At source temperatures close to 600 ºC, due to the interaction of In and Ga sources with water molecules and hydrazine decomposition products the volatile Ga 2 O and In 2 O were formed. These molecules reached the Si substrate which was heated to 400 ºC. The final chemical reaction involved Ga 2 O 3 , In 2 O 3 and phosphorus precursors. As a result of a spontaneous reaction the Ga 2 O 3 and InP phases were produced and segregated. The InP crystallized as a core while Ga 2 O 3 created the amorphous shell, because the growth temperature was insufficient for its crystallization.

https://www.researchgate.net/publication/271510240_VAPOR-SOLID_GROWTH_OF_InP_AND_Ga_2_O_3_BASED_COMPOSITE_NANOWIRES
Development of low temperature technology for the growth of wide band gap semiconductor nanowires. დ.ჯიშიაშვილი, ზ.შიოლაშვილი, ა.ჭირაქაძე, ა.ჯიშიაშვილი, ნ.მახათაძე, კ.გორგაძე. AIMS Materials Science, 3(2), 2016. pp. 470-485. State Target Program

In2Ge2O7, Ge3N4, In2O3 and germanium nanowires were synthesized by the developed hydrazine (N2H4)-based technology. Annealing of germanium or Ge+In sources in the vapor of N2H4+3 mol.% H2O caused the formation of volatile GeO and In2O molecules in the hot zone. These molecules were transferred to the Si substrate, which was placed in the could zone of a reactor. After interacting with hydrazine decomposition products (NH3, NH2, NH, H2, H) and water, Ge3N4 nanowires and nanobelts were produced on the Ge source in the temperature range of 500–520 ºC. The growth temperature of Ge3N4 nanowires in hydrazine vapor was by 350 ºC lower than the temperature reported in the literature. Using In+Ge source the tapered In2O3 nanowires were formed on the Si substrate at 400 ºC. At 420–440 ºC the mixture of In2O3 and Ge nanowires were synthesized, while at 450 ºC In2Ge2O7 nanowires were produced, with InN nanocrystals growing on their stems. The possible chemical reactions for the synthesis of these nanostructures were evaluated. The growth temperatures of both, In2Ge2O7 and InN nanostructures were by 50–150 ºC lower than that, reported in the literature. The results of this work clearly demonstrate the ability of hydrazine vapor to reduce the growth temperature of nitride and oxide nanomaterials

https://www.aimspress.com/article/id/728
Influence of water on the growth process of Ge3N4 and InP nanowires. Proceedings of ICANM 2016: Int. Conf. Exh. Adv. Nano Mater., 2016, Montreal, IAEMM, 73-80. State Target Program

The germanium nitride and InP nanowires were grown using the pyrolytic decomposition products of hydrazine (N2H4), which was containing 3 mol.% H2O. In a separate set of experiments the quartz microbalance was used to study the interaction of water containing hydrazine with Ge sample in the temperature range of 450-650°C. It was established that up to 500°C only water molecules interact with Ge, forming volatile suboxide GeO. At higher temperatures GeO molecules and nitrogen precursors, produced after decomposition of hydrazine, form crystalline Ge3N4 nanowires on the Ge surface. Analysis of thermo-chemical reactions reveal that in the presence of water molecules and nitrogen precursors the formation of nitride is thermodynamically favourable than the synthesis of germanium dioxide. When InP was annealed in hydrazine at 440°C the water molecules were producing volatile In2O. After reaching the Si substrate these molecules were interacting with phosphorus vapor, producing InP nanowires.

http://www.orientjchem.org/vol33no3/influence-of-water-on-the-growth-process-of-ge3n4-and-inp-nanowires/
New approaches to development of new nanomaterials for magnetic hyperthermia of cancer cells and prospectives of combined treatment of cancer in Georgia. Journal of Low Dimensional Systems, 2018, v. 2 (1), 8-22.Grant Project

Paper deals with the development and testing of materials for magnetic hyperthermia of cancer utilizing of the

microwave and hydrazine based new technologies for the growth of Ag-doped LaMnO3 and/or Ni-Cu coated

nanocomposites. Methods of testing toxicity (examining the negative effects these particles have on biological entities) of MNPs at the levels of impact far below the level of clearly revealed cytological changes are proposed and discussed. The proposed and utilized preliminary studies were focused on behavioral effects, which do not threaten the life and health of experimental animals and, most importantly, determine the toxicity at the levels far below of commonly registered by means of usually applied assays. Prospective of use of the developed nanocomposites as materials for effective combined methodology of cancer treatment including radiotherapy, chemotherapy, hormone therapy, magnetic hyperthermia and photodynamic therapy in several developed countries (Germany, UK, USA, Australia, Canada) and in Georgia are reviewed and discussed.

http://static.bsu.az/w10/Shekil/LOW%20Dimension%20Journal/Vol%202(1).pdf
Growth of InP based composite nanowires. დ.ჯიშიაშვილი, ა.ჭირაქაძე, ზ.შიოლაშვილი, ნ.მახათაძე, ა.ჯიშიაშვილი, დ.ყანჩაველი, დ.სუხანოვი, ვ.გობრონიძე. Journal of Low Dimensional Systems, 2018, v. 2 (1), 23-27.Grant Project

The core-shell nanowires comprising crystalline InP core and amorphous Zn3(PO4)2 shell were produced due to the spontaneous segregation of phases during the pyrolytic synthesis in hydrazine vapor. The nanowires were grown on Si substrate after sublimation of volatile species formed at the surfaces of Zn+InP or ZnO+InP source materials. It was established, that InP cores have a wurtzite structure, while the shells remained amorphous in the whole range of growth C). The shell thickness was doubled when ZnO source was used instead of Zn. This was explained°temperatures (420-460 by an increase of oxygen content in the reactor, which led to the enhancement of Zn3(PO4)2 synthesis.

http://static.bsu.az/w10/Shekil/LOW%20Dimension%20Journal/Vol%202(1).pdf
Synthesis of indium phosphide / zinc phosphate core-shell nanowires. ა.ჯიშიაშვილი, ზ.შიოლაშვილი, ნ.მახათაძე, დ.ჯიშიაშვილი,ბ, დ. ყანჩაველი, დ.სუხანოვი. Digest Journal of Nanomaterials and Biostructures. 2018, v. 13, N. 2, 535 – 542.Grant Project

Zn3(PO4)2/InP core-shell nanowires were grown by a one-step pyrolytic synthesis in a vapor of hydrazine containing 3mol.% H2O. InP+Zn and InP+ZnO were used as sources for producing volatile species that were forming nanowires in the cold zone of a reactor. The cores were crystalline InP, while the zinc phosphate shells had amorphous structure C) was insufficient for their crystallization. The°because the growth temperature (500 most favorable thermochemical reactions that may produce core and shell materials were evaluated. It was established that the amorphous Zn3(PO4)2 shell was growing by a template-based Vapor-Solid method. InP core and ring-shaped Zn3(PO4)2 shell, formed at the initial stage of synthesis, served as templates for the growth of shell. The nanotubes of C, when the source contained a low amount of InP.°zinc phosphate were produced at 540 This happened because the template-based growth of a shell proceeded even after the growth of InP core was stopped.

https://chalcogen.ro/535_JishiashviliA.pdf
Development and Testing of Nanoparticles for Treatment of Cancer Cells by Curie Temperature Controlled Magnetic Hyperthermia. საქართველოს მეცნიერებათა ეროვნული აკადემიის მოამბე, ტ. 15, #. 1, 91-98, 2021 წGrant Project

A vast amount of nanoparticles has been developed and proposed for the local hyperthermia of cancer during the last decades, but only a few of them correspond to the mandatory requirements of having therapeutic range Curie temperature (TC=41-450C), high-rate crystallinity and “strong” magnetic properties, strictly controlled homogeneity and dispersion of the nanoparticles, good biocompatibility and harmless decomposition products. Among them are the nickel-copper (Ni-Cu) and silver doped lanthanum manganite (AgxLa1-xMnO3) nanoparticles. The developed research showed that the materials obtained at lower than usual temperatures using microwave enhanced synthesizes and annealing can be successfully used for local hyperthermia revealing high magnetic properties. Behavioral toxicity testing of the developed nanoparticles was enhanced by blood oxygen saturation measurements using noninvasive oximetry in white rats. Both of the developed nanomaterials revealed a lower toxicity level than the commercially available Fe2O3 nanoparticles

http://science.org.ge/bnas/t15-n1/14_Chirakadze_Human%20and%20Animal%20Physiology.pdf
Growth of ZnO Microcrystals from Zn and Cu Chloride Precursors. ა.ჯიშიაშვილი, ზ.შიოლაშვილი, დ.ჯიშიაშვილი, ა.ჭირაქაძე, ნ.მახათაძე. საქართველოს მეცნიერებათა ეროვნული აკადემიის მოამბე, ტ. 15, #. 2, 53-58, 2021 წ.Grant Project

The study of the growth mechanism of ZnO microcrystals at relatively low (~300°C) temperatures using ZnCl2 and CuCl vapor showed that at 230°C the powdery layer of zinc and copper chloride particles was formed on Si substrate. In the local places of a layer the CuCl vapor produced the eutectic compositions with ZnCl2, which have a low melting point of 241°C. As the substrate temperature exceeded that value, the eutectic compositions melted forming liquid droplets. The molten droplets were actively absorbing the ZnO vapor. Their oversaturation resulted in the precipitation of solid ZnO nuclei. The further growth of ZnO microcrystals proceeded through the Vapor-Solid mechanism forming rod-like crystals at 290°C, or elongated, one-dimensional ZnO structures at 330°C.

http://science.org.ge/bnas/vol-15-2.html
Microwave synthesis, characterization and testing of acute toxicity of boron nitride nanoparticles by monitoring of behavioral and physiological parameters. Bulletin of the Georgian National Academy of Sciences, 2021, 15(2), pp. 120–126Grant Project

Hexagonal boron nitride nanoparticles, nanosheets and nanotubes (BNNPs) are even more promising materials for biomedical application than carbon nanotubes (CNTs) and nanoparticles (CNPs) due to their negligible cytotoxicity. The reported research yielded in development and testing of two distinctive microwaves enhanced comparatively low-temperature methods of synthesis of the hexagonal boron nitride nanoparticles and nanosheets with reduced distortion of the crystal lattice, and an improved method of general toxicity testing of the developed nanomaterials utilizing continuous observation of behavioral effects in white rats in combination with blood oxygen saturation, systolic blood pressure and body temperature measurements in full agreement with the 4R principles of animal welfare in scientific research. The obtained results allow us to expect that the developed materials can be a good basis for developing highly effective modalities for anticancer (in combination with chemotherapy, hyperthermia and radiotherapy) and antiviral (in combination with chemotherapy and hyperthermia) treatment

http://science.org.ge/bnas/vol-15-2.html
Photocatalytic Activity and Environmental Toxicity of ZnO Microcrystals with Different Morphologies. Bulletin of the Georgian National Academy of Sciences, 16 (1), pp. 81-86. 2022წState Target Program

This paper deals with the rising problem of water purification using the catalyst-assisted photodegradation process. The catalytic activities of ZnO microcrystals with different morphologies were studied. ZnO microcrystals, microspheres and hexagonal disks were used for the photocatalytic degradation of Methylene Blue dissolved in water. It was found that the degradation rate of ZnO depends not only on the specific surface area of the catalyst but also on the total area of chemically active crystal planes, which are exposed to the light source. For the water solution of Methylene Blue with the concentration of 100mg/L, the photodegradation rate was highest (∼50%) when the hexagonal ZnO disks were used as catalysts. Environmental toxicity of the developed nanomaterials in comparison with Ni-Cu magnetic nanoparticles usually utilized for the magnetic hyperthermia was tested using continuous monitoring of behavioral and physiological parameters of white rats exposed to injections of dispersions of ZnO microcrystals in saline solutions. ©

http://science.org.ge/bnas/t16-n1/12_Jishiashvili_Human%20and%20Animal%20Physiology.pdf

Publication in Scientific Conference Proceedings Indexed in Web of Science and Scopus


Synthesis of germanium nitride nanowires Proceedings of the International Semiconductor Conference, CAS, 1, art. no. 5336589, pp. 131-134. 2009Grant Project

The two types of single-crystalline alpha-Ge3N4 nanowires (NWs) were synthesized at 550degC by annealing the crystalline Ge sample in the hydrazine vapor containing 3 mol.% of water. The mass transfer was accomplished by volatile GeO molecules. The tapered NWs were grown by the vapor-liquid-solid method with ~8 nm Ge catalyst droplet surrounded by ~5 nm thick GeOx shell. NWs with uniform diameters were formed on the same sample by the oxide-assisted growth method. In the photoluminescence spectra of NWs the five peaks were observed in the blue-green region with energies close to the photoluminescence peaks of germanium suboxides.

https://www.researchgate.net/publication/251907458_Synthesis_of_germanium_nitride_nanowires
Temperature-dependent morphological changes in InP based nanowires. ICANM2015 Proceedings (August 10-12, 2015, Ottawa, Canada). A publication of the International Academy of Energy, Minerals & Materials. Ottawa, Ontario. 2015, pp.1-7State Target Program

The InP based nanowires were produced by direct annealing of crystalline InP sources in hydrazine (N_2H_4) vapor and subsequent condensation of volatile spices onto the substrates. The morphology and sizes of nanowires showed strong dependence on the growth temperature. In the temperature range of 440–540^oC, the morphology of InP nanostructures were changed from true nanowires with minimum diameters of ca. 25nm formed at 440^oC, to faceted, several micrometer size large crystalline blocks of InP growing at 540^oC simultaneously with the rhombus decorated zigzag shaped InP nanowires with extended surfaces. The nanowires growth mechanism also varied with the temperature. In the range of 440–500^oC they were growing through the Vapor–Solid mechanism. At 540^oC the Vapor–Solid and Vapor–Liquid–Solid mechanisms coexisted forming large elongated blocks of indium phosphide together with zigzag shaped InP nanowires.

https://www.researchgate.net/publication/282443159_Temperature-dependent_morphological_changes_in_InP_based_nanowires
Growth of nitride and phosphide nanowires in the presence of water molecules In: Proceedings of ICANM 2016: Int. Conf. Exh. Adv. Nano Mater., 2016, Montreal, IAEMM, 73-80. State Target Program

The germanium nitride and InP nanowires were grown using the pyrolytic decomposition products of hydrazine (N2H4), which was containing 3 mol.% H2O. In separate set of experiments the quartz microbalance was used to study the interaction of water containing hydrazine with Ge sample in the temperature range of 450-650°C. It was established that up to 500°C only water molecules interact with Ge, forming volatile suboxide GeO. At higher temperatures GeO molecules and nitrogen precursors, produced after decomposition of hydrazine, form crystalline Ge3N4 nanowires on the Ge surface. Analysis of thermo-chemical reactions reveal that in the presence of water molecules and nitrogen precursors the formation of nitride is thermodynamically favourable than the synthesis of germanium dioxide. When InP was annealed in hydrazine at 440°C the water molecules were producing volatile In2O. After reaching the Si substrate these molecules were interacting with phosphorus vapor producing InP nanowires.

http://icanm2016.iaemm.com/
Studies of the comparatively low-temperature synthesis and preliminary toxic characteristics of silver doped lanthanum manganite nanoparticles using conventionaland microwave heating. Conference Proceedings – Modern Trends In Physics. Baku 2019State Target Program

The research is dedicated to microwave and conventional methods of solution combustion synthesis of the relatively new nanomaterial proposed for magnetic hyperthermia of cancer cells and preliminary assessment of the toxicity of developed materials based on the behavioral methods and techniques at the levels far below of commonly registered by means of usualy and widely applied assays for humans. Farther research is needed to optimize the methods of synthesis of silver doped lanthanum manganites with required characteristics.

http://static.bsu.az/w28/MTPhysics/MTPhysics2019/Konference%20MTP%20proceeding%20(New).pdf
Vapor-phase synthesis of copper-based nanostructures. Conference Proceedings – Modern Trends In Physics. Baku, 01-03 May, 2019; pp. 43; WoSState Target Program

The vapor-phase synthesis of Cu-based nanomaterials using inorganic volatile Cu precursors is a key for controlling the composition, morphology and structure of copper containing nanomaterials. In this paper, we have shown that annealing of a solid Cu or CuO sources in the ambient of ammonium chloride and hydrazine decomposition products leads to the formation of volatile CuCl species. The mass transfer from source to the substrate, which was located in the “cold” zone of the reactor, was accomplished by these CuCl species. After condensation on Si substrate heated up to 400°C, they were interacting with hydrazine and ammonium chloride decomposition products forming, the agglomerated Cu microcrystals in case of Cu source. Different nanomaterials were synthesized when CuO was used as a source. These nanomaterials included Cu-based nanocrystals, nanowires and elongated microbubbles. Further investigations are planned to determine the composition and structure of these nanomaterials

http://static.bsu.az/w28/MTPhysics/MTPhysics2019/Konference%20MTP%20proceeding%20(New).pdf
VAPOR SYNTHESIS OF ZnO NANOCRYSTAL-BASED HOLLOW MICROSPHERES Proceedings of the 7th international conference MTP-2021: Modern trends in Physics. Volume II. December 15-17, 2021. Baku State University. Baku, AzerbaijanState Target Program

The hollow micro- and nanostructures have shown high optical, catalytic, sensing and other activities. In this paper, we have developed the ammonium chloride (NH4Cl) based technology for the vapor synthesis of ZnO and Zn-based nano- and micromaterials. We have shown that using NH4Cl, ZnO and Zn powders as a source powders, the layered microspheres can by synthesized, having diameters up to 100 micrometers. The layers were synthesized at 410°C. They were contained Zn plates with embedded, 100-200 nm sized ZnO nano crystals. The annealing of these spheres at the same temperature in an oxygen deficient environment caused the outdiffusion of Zn from the layer to the surface, oxidation and formation of a shell, which was encapsulating the Zn-rich spherical core. Further annealing resulted in the increase of Zn internal pressure in the core, followed by the micro-explosion of a shell and the formation of hollow ZnO microspheres.

http://mtp2021.bsu.edu.az/Proc-MTP-2021_Volume_1.pdf