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ON REDUCTION OF THE DIRIGHLET GENERALIZED

BOUNDARY VALUE PROBLEM TO AN ORDINARY

PROBLEM FOR HARMONIC FUNCTION

N. KOBLISHVILI, Z. TABAGARI, AND M. ZAKRADZE

Abstract. The method of reduction of the Dirichlet generalized bo-
undary value problem for a harmonic function to an ordinary problem
is given in the case of finite multiply connected and infinite domains.
The method is constructed on the basis of the scheme suggested by
M. A. Lavrent’ev and B. V. Shabat, which can be applied only to
a finite simply connected domain. Examples are considered and the
results of numerical calculations are given.

îâäæñéâ. ê�öîëéöæ éëùâéñèæ� ÿ�îéëêæñèæ òñêóùææï�åãæï áæîæ-

ýèâï à�êäëà�áëâ�ñèæ ï�ï�ä�ãîë �éëù�êæï øãâñèâ�îæãäâ á�õã�-

êæï éâåëáæ, ï�ïîñèæ éî�ãè�á�éñèæ á� ñï�ïîñèë �îæï öâéåýãâ-

ã�öæ. ��êæöêñèæ éâåëáæ �àâ�ñèæ� é. ã. è�ãîâêðæâãæï� á� �. ã. ö�-

��ðæï éâåëáæï ï�òñúãâèäâ, îëéâèæù à�éëæõâêâ�� éýëèëá ï�ïîñ-

èæ ù�è�á�éñèæ �îæï�åãæï. à�êýæèñèæ� é�à�èæåâ�æ á� éëùâéñ-

èæ� îæùýãæåæ âóïìâîæéâêðâ�æï öâáâàâ�æ.

1. Introduction

Let a domain D in the plane z = x + iy ≡ (x, y) be bounded by a
piecewise smooth contour S without multiple points (i.e., S is a simple
contour). Moreover, we assume that its parametric equation is given.

It is known that the classical statement of the Dirichlet ordinary bound-
ary value problem for the Laplace equation requires the continuity of the
boundary function. However, in practical problems there are cases when
the boundary function is piecewise continuous and therefore it is necessary
to consider the Dirichlet generalized problem (see [1,2]).
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A. On the boundary S of the domain D a function g(τ) is given which
is continuous everywhere, except a finite number of points τ1, τ2, . . . , τn at
which it has discontinuities of the first kind. It is required to find a function
u(z) ≡ u(x, y) ∈ C2(D)

⋂

C(D \ {τ1, τ2, . . . , τn}) satisfying the conditions

∆u(z) = 0, z ∈ D (1.1)

u(τ) = g(τ), τ ∈ S, τ 6= τk (k = 1, . . . , n), (1.2)

|u(z)| < M, z ∈ D, (1.3)

where ∆ is The Laplace operator and M is a real constant.
It is known [1,2] that Problem (1.1)–(1.3) is correct and for the general-

ized solution u(z) the generalized extremum principle is valid:

min
z∈S

u(z) < u(z)
z∈D

< max
z∈S

u(z),

where for z ∈ S it is assumed that z 6= τk (k = 1, n).
Note that the additional requirement of boundedness, when the domain

D is finite, concerns actually only the neighborhoods of break points of the
function g(τ). If the domain D is infinite, then condition (1.3) (except the
above-mentioned) means that (see [3])

limu(z) = c, for z → ∞, (1.4)

where c is a real constant and |c| < ∞. Evidently, if the function g(τ) is
continuous on S, then the Dirichlet generalized problem coincides with the
ordinary problem.

Condition (1.3) plays an important role in the extremum principle (1.4)
and, consequently, in the theorem on the uniqueness of a solution of Problem
A. Indeed, for example, the function u(z) = Re(1− 2/z) is harmonic in the
disk (x − 1)2 + y2 < 1 and equals zero everywhere on its boundary, except
the point z = 0; nevertheless, inside the disk it is nonzero. Moreover,
for unbounded boundary functions the theorem on the uniqueness of the
solution of the Dirichlet generalized problem is invalid. For example, in the
case of a disk (x − 1)2 + y2 < 1 for g(τ) = 0 as τ 6= 0, there exist two
harmonic functions u(z) = Re(1 − 2/z) and u(z) = 0 which take the given
value.

It should be noted that the methods which are used for the solution of the
Dirichlet ordinary boundary value problem are poorly suited (or not suited
at all) for the solution of the Dirichlet generalized boundary value problem
[4–9]. Therefore researchers try to conduct preliminary improvement of the
posed boundary problem. More precisely, they try to reduce, if possible,
Problem A by smoothing the boundary function g(τ) to the solution of the
ordinary problem [4–5]. To this end, it is sufficient to have a function u0(z)
which would be a solution of equation (1.1), bounded in D, continuous in
D everywhere, except the points τ = τk, and would have the same jumps
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at the points τk, as g(τ) has. Indeed, if such a function is constructed, then
by introduction of a new unknown function

v(z) = u(z) − u0(z), (1.5)

for its determination we have already a Dirichlet ordinary problem

B.

∆v(z) = 0, z ∈ D, (1.6)

v(τ) = f(τ), τ ∈ S, (1.7)

where f(τ) is a continuous function on the contour S (since the function
f(τ) at the points τk would have removable discontinuities).

If the domain D is infinite, then for the uniqueness of the solution of
Problems B and A (see [2,3]) we require additionally that

lim v(z) = c1, for z → ∞, (1.8)

lim u0(z) = c2, for z → ∞. (1.9)

It is evident that in this case, since c = c1 + c2, c2 must be given in advance
and c1 should be found while solving Problem (1.6),(1.7). Conditions (1.4),
(1.8) and (1.9) are essential, respectively, for the uniqueness of the solution
of Problems A and B in the case of an infinite domain. To see that this is
so, it is sufficient, e.g., to consider an exterior of the disk with the center
at the origin and of radius r, as the domain D, i.e., S : |z| = r. If the
function u1(z) is a solution of Problem A without condition (1.4), then the

functions of the type u2(z) = u1(z) + k ln |z|
r

are the solutions of Problem
A, where k 6= 0 is a real constant. It is clear that such a circumstance takes
place also for Problem B. Thus without conditions (1.4), (1.8) and (1.9) the
uniqueness of the solution of Problems A and B is violated.

After v(z) = v(x, y) is constructed, (1.5) gives the needed solution u(z),

u(z) = v(z) + u0(z), z ∈ D, z 6= τk. (1.10)

We consider all possible cases dealing with the domain D.

2. The Case of Finite Simply Connected Domain

In [1] a method is considered which allows one to reduce the solution of
the Dirichlet generalized boundary value problem for finite simply connected
domains to the solution of the ordinary problem. Here we give a brief
account of the method. The function

u0(z) =

n
∑

k=1

uk(z) (2.1)
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plays the role of the function u0(z), where

uk(z) =
hk
δk

arg(z − τk). (2.2)

In (2.2) hk is the jump of the function g(τ) at the point τk, i.e., hk =
g+(τk)−g−(τk), where g−(τk) and g+(τk) are the limit values of the bound-
ary function g(τ), when τ tends to the point τk along S, respectively, in the
positive and negative directions (by the positive direction is meant the move-
ment along the boundary in the counter-clockwise direction); δk = ϕ+

k −ϕ−
k ,

where ϕ+
k = lim

τ→τk+
arg(τ−τk), ϕ

−
k = lim

τ→τk−
arg(τ−τk), τ ∈ S; if τk is not an

angular point, then δk = −π; Here arg denotes the properly chosen branch
of the argument. It is evident that the function uk(z) is harmonic in the
domain D and continuous in D everywhere, except the points τ = τk. If
z ∈ D and z → τk along the path, a tangent to which at the point τk makes
an angle θ with the axis x (it can be easily seen that ϕ+

k < θ < ϕ−
k ), then

this function tends to the limit hk

δk

θ, i.e., the function uk(z) is bounded in

D. When passing along S in the positive direction through the point τk,
the function uk(z) has a jump hk

δk

ϕ+
k − hk

δk

ϕ−
k = hk. If the function u(z) is

a solution of Problem A, then the function

v(z) = u(z) −
n

∑

k=1

hk
δk

arg(z − τk)

is harmonic in the domain D and continuous in D. Indeed, u(z) and all

functions uk(z) = hk

δk

arg(z − τk) are harmonic in D. Further, the limit

values of the function v(z) as z → τ 6= τk (z ∈ D) are equal to

f(τ) = g(τ) −
n

∑

k=1

uk(τ). (2.3)

Moreover, the function f(τ) remains continuous while passing through each
point τk. Indeed, it is seen from (2.3) that from the function g(τ) with a
jump hk at the point τk we subtract the function uk(τ) with the same jump,
and the rest of the terms of the sum (2.3) are continuous at that point. Thus
the solution u(z) of the Dirichlet generalized problem can be represented as
the sum (1.10), where v(z) is a solution of Problem B with the continuous
boundary function (2.3) and the function u0(z) has form (2.1), i.e., finally
we have

u(z) = v(z) +

n
∑

k=1

hk
δk

arg(z − τk). (2.4)

It should be noted that since the ordinary Problem B is correct, i.e., the
solution v(z) exists, is unique and depends continuously on the data. Con-
sequently, the generalized Problem A is correct or determined physically.
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On the basis of formula (2.4) in [1] the following theorem is proved, which
explains the behavior of the generalized solution in the neighborhood of the
point τk.

Theorem 1. When the point z ∈ D approached the break point τk of the

boundary function g(τ) along various paths, the solution u(z) of the Dirichlet

generalized problem can tend to any limit between g−(τk) and g+(τk).

Remark 1. Under some restrictions, the case in which n = 1 has been
considered in [4, p. 102-105]. Particularly, to reduce the Dirichlet gener-
alized problem to the ordinary one it is assumed that at the break point
τ1 the tangent to S exits and the contour S near τ1 lies on one side of the
tangent.

3. The Case of an Infinite Plane with a Hole

Let a domain D be an infinite plane with the hole B1 which is bounded
by a simple contour S1 (S1 ≡ S). As we noted in Section 1, in this case the
Dirichlet generalized boundary value problem has the form

P.

∆u(z) = 0, ∀z ∈ D, (3.1)

u(τ) = g(τ), τ ∈ S, τ 6= τk (k = 1, n) (3.2)

|u(z)| < M, z ∈ D, (3.3)

It can be easily shown that in this case the method of M. A. Lavrent’ev
and B. V. Shabat (see Section 2) cannot be applied for reduction of Problem
P to Problem B. Firstly, the requirement of continuity of the function u0(z)
is violated in the domain D (see Section 2). Indeed, for example, under a
single circuit around the contour S the function arg(z− zk) increases by 2π
(or −2π), i.e., the adequacy between real physical process and mathematical
model violates. Moreover, the function u0(z) must have a finite limit at
infinity. However, the last condition does not take place, since lim arg(z−τk)
as z → ∞ does not exist. To construct the desired function u0(z) for
reduction of Problem (3.1)–(3.3) to Problem B, we pass from the infinite
domain D to the finite simply connected domain D∗ bounded by contour
S∗ (S∗ ≡ S∗

1 ), using an elementary conformal mapping (inversion)

z∗ = z0 +
R2

z − z0
. (3.4)

In (3.4), z = x − iy, z0 is the inner point of the domain B1 (to avoid
difficulties in calculations, it is better to take the “center” of B1 as z0) and
R is a real constant which is the radius of the circumference G centered at
the point z0. It is obvious that it is not necessary for the domain B1 to
contain the circumference G(z0;R) entirely. In the case of the conformal
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mapping (3.4) the situation is as follows: the whole plane z is mapped onto
the whole plane z∗ and conversely. In particular, z = ∞ transforms into
the point z∗ = z0 ∈ D∗; the infinite domain D becomes the finite domain
D∗ and the contour S becomes the contour S∗.

From (3.4) we have

z = z0 +
R2

z∗ − z0
. (3.5)

It is easy to see that if mapping (3.4) defines the domain D∗ with the
boundary S∗, then with the help of mapping (3.5) Problem P transforms
into Problem A for the domain D∗. Indeed, for the conformal mapping

(3.5) the function u(z) becomes the function u∗(z∗) = u(z0 + R2

z∗−z0
) which

is harmonic and continuous in D∗\{z0} and bounded in the neighbourhood
of the point z0 (i.e., z0 is a removable singular point). However, by virtue of
the theorem on the elimination of singularities of a harmonic function (see
[1–3]), the function u∗(z∗) is harmonic in the domain D∗. Analogously, in
the conformal mapping (3.5) the piecewise continuous function g(τ) (τ ∈ S)

becomes the function g∗(τ∗) = g(z0 + R2

τ∗−z0
) (τ∗ ∈ S∗) which is piecewise

continuous with conservation of the values of jumps. Thus, using mapping
(3.5), we actually reduce Problem P to the problem

A∗.

∆u∗(z∗) = 0, z∗ ∈ D∗, (3.6)

u∗(τ∗) = g∗(τ∗), τ∗ ∈ S∗, τ∗ 6= τ∗k , (3.7)

|u∗(z∗)| < M, z∗ ∈ D∗, (3.8)

where τ∗k = z0 + R2

τk−z0
.

Since D∗ is the finite simply connected domain, for reduction of Problem
(3.6)–(3.8) to Problem B, we can use the method of M. A. Lavrent’ev and
B. V. Shabat, i.e., we can use the function

u∗0(z
∗) =

n
∑

k=1

u∗k(z
∗), (3.9)

u∗k(z
∗) =

h∗k
δ∗k

arg(z∗ − τ∗k ), (3.10)

where h∗k ≡ hk = g+(τk) − g−(τk).
If we insert the values z∗ and τ∗k from (3.4) into (3.9) and (3.10) (as

radius R is taken R = 1), then we obtain the needed function u0(z) for an
infinite domain D in the form

u0(z) =

n
∑

k=1

uk(z), (3.11)
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uk(z) =
hk
δk
wk(z), wk(z) = arg

( z − τk
(z − z0)(z0 − τk)

)

, δk = ϕ+
k − ϕ−

k ,

ϕ+
k = lim

τ→τk+
wk(τ), ϕ−

k = lim
τ→τk−

wk(τ), τ ∈ S.

From (3.11) for the value of the constant c2 (see (1.9)) we have

c2 = lim
z→∞

u0(z) =

n
∑

k=1

hk
δk

arg(z0 − τk).

It should be noted that since in the case of the conformal mapping (3.5)
Problems P and A∗ transform into each other, for the generalized solution
of Problem P there is a theorem which is analogous to Theorem 1.

4. The Case of a Finite Multiply Connected Domain

Let a domain D be the finite m-connected domain with the boundary

S=
m
⋃

k=1

Sk, where each Sk is a closed simple contour. Moreover, Sk
⋂

Sj=∅,

when k 6= j and the contours Si (i = 1, 2, . . . ,m − 1) lie inside the finite
domain which is bounded by the contour Sm. Note that the method which
is described in Section 2 can be applied to this case, if all points τk (k =
1, 2, . . . , n) of discontinuity are placed on the contour Sm. If either τk ∈ Sj
and j 6= m, then the continuity of the function u0(z) is violated in the
domain D. For example, under a single circuit around the contour Sj the
function arg(z − τk) increases by 2π (or −2π).

On the basis of Section 3, to avoid this circumstance we propose the
method for reduction of Problem A to Problem B. It is evident that in
Problem A it is not necessary that the points of discontinuity were placed on
all contours Sk (k = 1, 2, . . . ,m). For simplicity of our writing we introduce
the following notation. We denote by Γ1,Γ2, . . . ,Γl, where 1 ≤ l ≤ m, those
of the contours Sk (k = 1, 2, . . . ,m) on which the points of discontinuity lie,
and suppose that the number of the points of discontinuity on the contour
Γi is ki. It is clear that for the natural numbers ki we have 1 ≤ ki ≤ n and
k1 +k2 + · · ·+kl = n. Further, we denote by τik (k = 1, 2, . . . , ki) the points
of discontinuity which lie on the contour Γi and analogously to Section 1
we introduce the notation hik = g+(τik) − g−(τik), where hik is a jump of
the function g(τ) at the point τik.

For smoothing of the function g(τ) on the contour Γi we consider the
function

ui(z) =

ki
∑

k=1

uik(z),
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uik(z) =











hik
δik

arg
( z − τik

(z − zi0)(zi0 − τik)

)

for Γi 6= Sm,

hmk
δmk

arg(z − τmk) for Γi = Sm,
(4.1)

where zi0 is a “center” of the finite domain Bi with the boundary Γi (zi0 ∈
Bi), while

δik = ϕ+
ik − ϕ−

ik, ϕ+
ik = lim

τ→τik+
arg

( τ − τik
(τ − zi0)(zi0 − τik)

)

,

ϕ−
ik = lim

τ→τik−
arg

( τ − τik
τ − zi0)(zi0 − τik)

)

, τ ∈ Γi, Γi 6= Sm;

δmk = ϕ+
mk − ϕ−

mk, ϕ+
mk = lim

τ→τmk+
arg(τ − τmk),

ϕ−
mk = lim

τ→τmk−
arg(τ − τmk), τ ∈ Sm.

It is easy to see that the function ui(z) is harmonic in the domain D and
continuous in D everywhere, except the points τik (k = 1, 2, . . . , ki). The
continuity of the function ui(z) is not violated in the domain D under the
circuit around the contour Γi and, when passing along the contour Γi in the
positive direction through the points τik, the function has a jump hik.

As the function u0(z) we take

u0(z) =

l
∑

i=1

ui(z) =

l
∑

i=1

ki
∑

k=1

uik(z)

and consider the function

v(z) = u(z) −
l

∑

i=1

ki
∑

k=1

uik(z),

where u(z) is a solution of Problem A for the domain D with the boundary
function g(τ). Let us show that the function v(z) is a solution of Problem
B. Indeed, u(z) and all the functions uik(z) (see (4.1)) are continuous and
harmonic in the domain D. Further, the limit value of the function v(z), as
z → τ 6= τik (z ∈ D) is

f(τ) = g(τ) −
l

∑

i=1

ki
∑

k=1

uik(τ). (4.2)

The function f(τ) remains continuous while passing through every point
τik. Indeed, in (4.2), from the function g(τ) with a jump hik at the point
τik we subtract the function uik(τ) with the same jump and the rest terms
of the sum (4.2) are continuous at this point.
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Thus in the case of the finite multiply connected domain D the solution
u(z) of Problem A can be represented in the form

u(z) = v(z) +

l
∑

i=1

ki
∑

k=1

uik(z). (4.3)

In (4.3) v(z) is a solution of Problem B with the boundary function f(τ)
and the functions uik(z) are given by (4.1). Taking into account the unique
solvability of Problem A, the unequeness of the obtained solution is clear. In
the case under consideration, on the basis of (4.3), there is a theorem which
is analogous to Theorem 1 and explains the behavior of the generalized
solution in the neighborhood of the point τik.

Theorem 2. The limit values of the solution u(z) of the Dirichlet gen-

eralized problem, when the point z ∈ D approaches the point τik lie between

g−(τik) and g+(τik).

Indeed, let z ∈ D and z → τik along the path, a tangent to which at the
point τik makes an angle θ with the axis x. On the basis of Sections 2 and
3, it can be easily shown that for an arbitrary contour Γi (1 ≤ i ≤ l) we
have ϕ+

ik < θ < ϕ−
ik. Further, (4.3) implies that the function u(z) tends to

the limit

uθ(τik) = ũ(τik) +
hik
δik

θ. (4.4)

In (4.4) ũ(τik) is the limit value of the sum of the function v(z) and all those
functions (which are involved in (4.3)) whose limits are independent of the
path of approach of the point z to the point τik, except the function uik(z).
In particular, if the point z approaches the point τik along the contour Γi
in the positive direction, then from (4.3) we have

g+(τik) = ũ(τik) +
hik
δik

ϕ+
ik. (4.5)

Analogously,

g−(τik) = ũ(τik) +
hik
δik

ϕ−
ik. (4.6)

With the help of (4.5) and (4.6), from (4.4) we get

uθ(τik) = g+(τik) +
hik
δik

(θ − ϕ+
ik), (4.7)

uθ(τik) = g−(τik) +
hik
δik

(θ − ϕ−
ik). (4.8)

In formulas (4.7) and (4.8) we know that δik < 0, θ − ϕ+
ik > 0, θ − ϕ−

ik < 0
and hik = g+(τik) − g−(τik). Therefore, if hik > 0, then it is evident that
g−(τik) < uθ(τik) < g+(τik). Analogously, if hik < 0, then g+(τik) <
uθ(τik) < g−(τik). Theorem is proved.
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5. The Case of an Infinite Plane with Holes

Let a domain D be the infinite plane with the holes Dk (k = 1, 2, . . . ,m),
which are bounded respectively by simple contours Sk, i.e., the entire bound-

ary of the domain D is S =
m
⋃

k=1

Sk. Analogously to Sections 3 and 4, in this

case also the method of M. A. Lavrent’ev and B. V. Shabat cannot be ap-
plied for reduction of Problem A to Problem B. In the notation of Section 3,
for smoothing the boundary function g(τ) on the contour Γi (i = 1, 2, . . . , l)
we consider the function

ui(z) =

ki
∑

k=1

uik(z),

uik(z) =
hik
δik

arg
( z − τik

(z − zi0)(zi0 − τik)

)

, (5.1)

where zi0 is the “center” of the finite domain Bi (see Section 4). As u0(z)
we take

u0(z) =

l
∑

i=1

ki
∑

k=1

uik(z), (5.2)

and consider the function v(z) = u(z) − u0(z), where u(z) is the solution
of Problem A with the boundary function g(τ). Analogously to Sections 3
and 4, it can be easily shown that v(z) is the solution of Problem B. From
(5.2) we have

c2 = lim
z→∞

u0(z) =

l
∑

i=1

ki
∑

k=1

hik
δik

arg(zi0 − τik).

Thus, in this case the solution of Problem A can be represented in the form

u(z) = v(z) +

l
∑

i=1

ki
∑

k=1

uik(z),

where v(z) is the solution of Problem B with the boundary function of form
(4.2), while the functions uik(z) are given by formula (5.1). In the case
under consideration there is a theorem which is similar to Theorems 1 and
2. Finally, we make one remark concerning the calculation of the values δik.

Remark 2. In numerical realization of the above-considered methods it
is necessary to take into account the following circumstances: a) Numerical
realization of the these methods requires the calculation of a function of
the type argψ(z) = arg(ψ1(x, y) + iψ2(x, y)) (where ψ1 and ψ2 are real
functions), which in its turn means the calculation of functions of the type

arctan ψ2

ψ1

. Therefore, in calculation of ψ2

ψ1

overflow may occur (i.e., stoppage

of a computer). This case will take place when ψ2 9 0 and ψ1 → 0 (while
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the point z moves in the domain D). In order to avoid these cases it is

sufficient to calculate the function arctan ψ2

ψ1

by using the following formula

arctan
ψ2

ψ1

=















arcsin
ψ2

√

ψ2
1 + ψ2

2

as ψ1 ≥ 0,

− arcsin
ψ2

√

ψ2
1 + ψ2

2

as ψ1 < 0.

b) Moreover, in numerical realization of the proposed methods we cannot
infinitely approach the point τik. Indeed, in this case in calculation of
functions of the type argψ(z), there occur indeterminacies of type 0

0
. The

calculation of such indeterminacies in a computer is impossible at all or
may give wrong results. In numerical realization, from our point of view,
the following approach is more appropriate. We circumscribe around each
point of discontinuity τik, as a center, the circumference Cik : |z − τik| = ε.
Since the functions g(τ) and argψ(τ) are continuous in the neighborhood
of the points τik, for arbitrarily small ε1 > 0 there exists ε(ε1) such that the
following conditions are fulfilled: 1) each circumference Cik intersects the
contour Γi only at two points τ+

ik and τ−ik , which are situated respectively
to the right and to the left of the point τik; 2) there will be no difficulties
in calculation of argψ(τ±ik). 3) inequalities |g±(τik) − g(τ±ik)| < ε1 and

|ϕ±
ik − argψ(τ±ik)| < ε1 will be fulfilled. It is evident that in this case in the

role of values g±(τik) and ϕ±
ik we can take respectively g(τ±ik) and argψ(τ±ik)

with accuracy ε1. If parametric equation of contour Γi is z = zi(t) and
τik = zi(tik), then we can take ε > 0 so small that as the points τ+

ik and τ−ik
we can take τ+

ik = zi(tik + ε) and τ−ik = zi(tik − ε), and the conditions 1),
2), 3) will be fulfilled.

6. Numerical Examples of Smoothing of the Boundary

Functions

In this section we present the results of the numerical experiments which
are performed on the basis of the proposed methods. In Examples 1, 2
and 3 as the domain D we consider finite domains and the infinite z-plane
with one hole, i.e., m = 1 and S = S1 = Γ1. For the sake of simplicity, in
Examples 1, 2 and 3 we take as the function g(τ) the same function which
has four points τk(k = 1, 2, 3, 4) of finite discontinuity. The points τk lie on
the contour S preserving the order of succession under the positive circuit
of S. In particular, we take the function

g(τ) =



















1 for τ ∈ τ1τ2,

2 for τ ∈ τ2τ3,

3 for τ ∈ τ3τ4,

4 for τ ∈ τ4τ1,
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where τ1τ2, τ2τ3, τ3τ4, τ4τ1 are open arcs of the contour S. It is evident
that the jumps of the function g(τ) at the points τk(k = 1, 2, 3, 4) are equal:
h1 = −3; h2 = 1; h3 = 1; h4 = 1. According to Remark 2, as the points τ+

k

and τ−k we take τ+
k = z(tk + ε), τ−k = z(τk − ε) respectively, where z = z(t)

is the parametric equation of the contour S, and tk is the value of parameter
t for which τk = z(tk). In the numerical experiments ε = 10−7 was taken
and calculations were performed in double precision.

Example 1. The domain D is the interior of the ellipse S : x = a cos t,
y = b sin t, 0 ≤ t ≤ 2π. Since the contour S is smooth, δk = −π ≈
−3.141592653589793. In Table 1 the results are given for a = 5, b = 2 and
τ1 = (5, 0), τ2 = (0, 2), τ3 = (−5, 0), τ4 = (0,−2).

Table 1

k δk f(τ+
k ) f(τ−k )

1 −3.14159240425 1.49999981566 1.49999975817

2 −3.14159261362 0.98447561099 0.98447557439

3 −3.14159240514 1.49999979033 1.49999978463

4 −3.14159261362 2.01552400029 2.01552396483

Example 2. The domain D is the interior of the astroid S : x =
2 cos3 t, y = 2 sin3 t, 0 ≤ t ≤ 2π. Having in mind the definition of ϕ+

k

and ϕ−
k , it should be noted that if the point τk is a point of cusp, then

theoretically δk = ϕ+
k − ϕ−

k = 0. It is evident that for the engineering
(practical) problems δk 6= 0, however really it is near zero. The calculations
show that in the engineering problems the above-described methods can
be applied to cuspidal point. In Table 2 we present the results for the case
when the points τk(k = 1, 2.3, 4) are the points of a cusp, namely τ1 = (2, 0),
τ2 = (0, 2), τ3 = (−2, 0), τ4 = (0,−2).

Table 2

k δk 10−8f(τ+
k ) 10−8f(τ−k )

1 −0.133439988836E− 06 0.483674282386 0.483674282386

2 −0.129905311397E− 06 −0.349943676833 −0.349943676833

3 −0.133439988304E− 06 −0.222619109110 −0.222619109110

4 −0.129905311397E− 06 −0.578968783773 −0.578968783773

Example 3. As an infinite domain D we take the exterior of the ellipse
S : x = a cos t, y = b sin t, 0 ≤ t ≤ 2π. In Table 3 we represent the results
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of calculations for a = 5, b = 2, and τ1 = (5, 0), τ2 = (0, 2), τ3 = (−5, 0),
τ4 = (0,−2).

Table 3

k δk f(τ+
k ) f(τ−k )

1 −3.14159282218 1.50000046373 1.50000044398

2 −3.14159219356 2.01552450865 2.01552470368

3 −3.14159282218 1.50000043827 1.50000046944

4 −3.14159219356 0.98447620403 0.98447639906

Example 4. D is the doubly-connected domain with the boundary
S = S1 ∪ S2, where the contour S1(S1 ≡ Γ1) is the ellipse S1 : x = a cos t,
y = b sin t, while the contour S2(S2 ≡ Γ2) is the circumference S2 : x =
r cos t, y = r sin t, 0 ≤ t ≤ 2π. As the boundary function we take the
following one:

g(τ) =

{

g1(τ), τ ∈ S1,

g2(τ), τ ∈ S2.
(6.1)

In (6.1) the functions g1(τ) and g2(τ) on the open arcs of the contours S1

and S2 respectively have the form

g1(τ) =



















1 τ ∈ τ11τ12,

2 τ ∈ τ12τ13,

3 τ ∈ τ13τ14,

4 τ ∈ τ14τ11;

g2(τ) =



















1 τ ∈ τ21τ22,

3 τ ∈ τ22τ23,

5 τ ∈ τ23τ24,

7 τ ∈ τ24τ21.

The jumps of the function g(τ) at the points of discontinuity τik (i = 1, 2;
k = 1, 2, 3, 4) equal: h11 = −3, h12 = 1, h13 = 1, h14 = 1, h21 = −6,
h22 = 2, h23 = 2, h24 = 2. The results of the calculations for a = 5, b = 2,
r = 10, τ11 = (5, 0), τ12 = (0, 2), τ13 = (−5, 0), τ14 = (0,−2), τ21 = (10, 0),
τ22 = (0, 10), τ23 = (−10, 0), τ24 = (0,−10) are given in Table 4.

Table 4

k δ1k f(τ+
1k) f(τ−1k)

1 −3.14159282218 −0.499999503318 −0.499999713212

2 −3.14159219356 0.518188102194 0.518188348548

3 −3.14159282218 −0.499999664595 −0.499999553194

4 −3.14159219356 −1.518187565080 −1.518187321872
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k δ2k f(τ+
2k) f(τ−2k)

1 −3.14159255475 1.00000060017 1.00000018330

2 −3.14159255411 1.59033484048 1.59033494669

3 −3.14159255475 1.00000029723 1.00000048624

4 −3.14159255411 0.40966583678 0.40966594299

Finally, it should be noted that the numerical realization of the above-
considered schemes has shown the following circumstance. According to
Remark 2, in calculation of expressions of type argψ(τ±ik) (see Sections 2,
3, 4, 5) the “minimal” value of ε is 10−7, i.e., if we take ε = 10−8, then the
considered methods are unstable.
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